mydy.net
当前位置:首页 >> 如图,已知抛物线y=Ax^2+Bx+C(A≠0)与x轴交于A(1,... >>

如图,已知抛物线y=Ax^2+Bx+C(A≠0)与x轴交于A(1,...

(2) 如图1,设BC的垂直平分线DE交BC于M,交x轴于N,连接CN,过点M作MF⊥x轴于F. ∴△BMF∽△BCO,∴MFCO=BFBO=BMBC=12. ∵B(4,0),C(0,2), ∴CO=2,BO=4, ∴MF=1,BF=2, ∴M(2,1) ∵MN是BC的垂直平分线,∴CN=BN, 设ON=x,则CN=BN=4-...

BC的垂直平分线与对称轴的交点是△ABC的外心,设这一点为F,FA为三角形外接圆半径,P在x轴下方的情况下,当FA=FP时,A、P、B、C四点共圆,∠CPB=∠CAB。这是一种情况

∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(-2,0),∴点B的坐标为(6,0),AB=6-(-2)=8.故答案为:8.

解: (1)∵对称轴为直线x=-1的抛物线y=ax^2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=-1对称,∵点A的坐标为(-3,0)∴点B的坐标为(1,0)(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1, 对称轴x=-b/(2a)=-1 解得b=2.将B(1,...

(1)由题知: 解得 ∴所求抛物线解析式为:y=-x 2 - 2x +3. (2)存在符合条件的点P,其坐标为P( -1, )或P( -1,- )或P(-1,6)或P(-1, ). (3)过点E作EFx轴于点F,设E(a,-a 2 -2a +3)(-3

(1)设抛物线解析式为y=a(x+1)(x-3),∵抛物线过点(0,3),∴-3=a(0+1)(0-3),∴a=1,∴抛物线解析式为y=(x+1)(x-3)=x2-2x-3,∵y=x2-2x-3=(x-1)2-4,∴M(1,-4).(2)如图1,连接BC、BM、CM,作MD⊥x轴于D,∵S△BCM=S梯形OCMD+S△BM...

(1)如图①,∵y=ax2+bx-3(a≠0)与x轴交于点A(1,0)和点B (-3,0),∴0=a+b?30=9a?3b?3,解得a=1b=2,∴y=x2+2x-3.(2)∵y=x2+2x-3,∴y=(x+1)2-4,∴N(-1,0),∴ON=1.∴当x=0时,y=-3,∴C(0,-3)∴OC=3.∴在Rt△CON中由勾股定理,得CN...

解:(1)设 任取x,y的三组值代入,求出解析式 令y=0,求出 ;令x=0,得y=-4, ∴ A、B、C三点的坐标分别是A(2,0),B(-4,0),C(0,-4)。(2)由题意, 而AO=2,OC=4,AD=2-m,故DG=4-2m又 ,EF=DG,得BE=4-2m,∴DE=3m∴S DEFG =DG·DE=(4...

解:(1)∵抛物线的对称轴为x=1,且A(-1,0), ∴B(3,0); 可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3), 则有:a(0+1)(0-3)=-3,a=1; ∴y=(x+1)(x-3)=x2-2x-3; (2)由于A、B关于抛物线的对称轴x=1对称, ...

解:(1)解法一:设y=ax2+bx+c(a≠0),任取x,y的三组值代入,4a?2b+c=?4a+b+c=?524a+2b+c=0,解得a=12b=1c=?4,∴解析式为y=12x2+x?4,令y=0,求出x1=-4,x2=2;令x=0,得y=-4,∴A、B、C三点的坐标分别是A(2,0),B(-4,0),C(0,...

网站首页 | 网站地图
All rights reserved Powered by www.mydy.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com